Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Найдите наименьшее натуральное n, для которого число nn не является делителем числа 2008!.

Вниз   Решение


Докажите, что первые цифры чисел вида 22n образуют непериодическую последовательность.

ВверхВниз   Решение


Докажите, что если боковые рёбра пирамиды образуют с плоскостью основания равные углы, то в основании лежит вписанный многоугольник, а высота пирамиды проходит через центр описанной окружности этого многоугольника.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P   (P ≠ H).  Докажите, что прямая PH проходит через середину отрезка MN.

ВверхВниз   Решение


Ребро куба ABCDA1B1C1D1 равно 1. Найдите радиус сферы, касающейся: а) рёбер AB , AA1 , AD и плоскости B1CD1 ; б) рёбер AB , AA1 , AD и прямой CD1 .

ВверхВниз   Решение


Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

ВверхВниз   Решение


Дан треугольник ABC, в котором  AB > BC.  Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный.

ВверхВниз   Решение


B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось?

ВверхВниз   Решение


В стране Далёкой провинция называется крупной, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?

Вверх   Решение

Задача 116684
Темы:    [ Задачи с неравенствами. Разбор случаев ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

В стране Далёкой провинция называется крупной, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?


Решение

  Упорядочим провинции по возрастанию населения. Как первая, так вторая провинции не является крупными, так как для каждой из них не найдётся двух провинций с меньшим населением. В третьей провинции живёт меньше 14% населения, так как в обеих провинциях с меньшим населением живёт в сумме не больше  7% + 7% = 14%.  В четвёртой провинции живёт меньше 21%, так как снова население любых двух меньших провинций меньше  7% + 14% = 21%.  По тем же причинам в пятой провинции живёт меньше  14% + 21% = 35%.
  Итак, в первых пяти провинциях живёт в сумме меньше  7% + 7% + 14% + 21% + 35% = 84%  населения. Следовательно, провинций больше 5.
  Пример распределения населения по шести провинциям: 7%, 7%, 11%, 16%, 25%, 34% населения.


Ответ

6 провинций.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 75
Год 2012
класс
Класс 9
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .