ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 116837
УсловиеНа сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой. Решение Пусть M – середина AC, а A2, B2 и C2 – точки касания вписанной окружности соответственно со сторонами BC, AC и AB. Замечания8 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|