Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Найдите наименьшее натуральное n, для которого число nn не является делителем числа 2008!.

Вниз   Решение


Докажите, что первые цифры чисел вида 22n образуют непериодическую последовательность.

ВверхВниз   Решение


Докажите, что если боковые рёбра пирамиды образуют с плоскостью основания равные углы, то в основании лежит вписанный многоугольник, а высота пирамиды проходит через центр описанной окружности этого многоугольника.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P   (P ≠ H).  Докажите, что прямая PH проходит через середину отрезка MN.

ВверхВниз   Решение


Ребро куба ABCDA1B1C1D1 равно 1. Найдите радиус сферы, касающейся: а) рёбер AB , AA1 , AD и плоскости B1CD1 ; б) рёбер AB , AA1 , AD и прямой CD1 .

ВверхВниз   Решение


Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

ВверхВниз   Решение


Дан треугольник ABC, в котором  AB > BC.  Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный.

ВверхВниз   Решение


B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось?

Вверх   Решение

Задача 117009
Темы:    [ Текстовые задачи (прочее) ]
[ Деление с остатком ]
Сложность: 3-
Классы: 5,6,7
Из корзины
Прислать комментарий

Условие

B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось?


Решение

  Вася начал с девятой конфеты слева, значит, из 992 конфет он съедал по одной конфете из каждых семи (первую из каждой "семёрки"). Так как
992 : 7 = 141  (остаток 5), то Вася съел 142 конфеты. После этого осталось 858 конфет.
  Петя начал с седьмой конфеты слева, то есть из 852 конфет он съедал по одной конфете из каждых девяти (первую из каждой "девятки"). Так как
852 : 9 = 94  (остаток 6), то Петя съел 95 конфет.
  Таким образом, осталось 763 конфеты.


Ответ

763 конфеты.

Источники и прецеденты использования

олимпиада
Название Московская устная олимпиада для 6-7 классов
год/номер
Номер 11 (2013 год)
Дата 2013-03-17
класс
1
Класс 6 класс
задача
Номер 6.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .