Processing math: 0%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Перед вами замок "с секретом" (см. рисунок).

Если вы поставите стрелки на нужные буквы, то получите ключевое слово и замок откроется. Какое это слово?

Вниз   Решение


Докажите, что для любого натурального числа n и для любых действительных чисел a_1, a_2, \ldots, a_n, удовлетворяющих условию a_1+a_2+\ldots+a_n\ne 0, уравнение \begin{align*} &a_1(x-a_2)(x-a_3)\ldots(x-a_n)+\\+&a_2(x-a_1)(x-a_3)\ldots(x-a_n)+\ldots\\ \ldots+&a_n(x-a_1)(x-a_2)\ldots(x-a_{n-1})=0 \end{align*} имеет хотя бы один действительный корень.

ВверхВниз   Решение


Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.

ВверхВниз   Решение


Докажите, что нечётное число, являющееся произведением n различных простых сомножителей, можно представить в виде разности квадратов двух натуральных чисел ровно 2n–1 различными способами.

ВверхВниз   Решение


После экспериментов с мнимой единицей, Коля Васин занялся комплексной экспонентой. Пользуясь формулами задачи 61115, он смог доказать, что  sin x  всегда равен нулю, а  cos x  – единице:

   
Где ошибка в приведённых равенствах?

ВверхВниз   Решение


Доказать, что любая ось симметрии 45-угольника проходит через его вершину.

Вверх   Решение

Задача 30934
Тема:    [ Четность и нечетность ]
Сложность: 2
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Доказать, что любая ось симметрии 45-угольника проходит через его вершину.


Решение

См. задачу 30290 а).

Источники и прецеденты использования

книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 1
Название Четность
Тема Четность и нечетность
задача
Номер 06

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .