Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дан треугольник ABC и прямая l, пересекающая прямые BC, AC, AB в точках La, Lb, Lc. Перпендикуляр, восставленный из точки La к BC, пересекает AB и AC в точках Ab и Ac соответственно. Точка Oa – центр описанной окружности треугольника AAbAc. Аналогично определим Ob и Oc. Докажите, что Oa, Ob и Oc лежат на одной прямой.

Вниз   Решение


Доказать, что  (2n – 1)n – 3  делится на  2n – 3  при любом n.

Вверх   Решение

Задача 31249
Тема:    [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Доказать, что  (2n – 1)n – 3  делится на  2n – 3  при любом n.


Решение

2n – 1 ≡ 2 (mod 2n – 3),  поэтому  (2n – 1)n – 3 ≡ 2n – 3 ≡ 0 (mod 2n – 3).

Источники и прецеденты использования

книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 11
Название Остатки
Тема Деление с остатком
задача
Номер 19

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .