ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Крутовский Р.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 5]      



Задача 66847

Темы:   [ Сферы (прочее) ]
[ Малые шевеления ]
Сложность: 3+
Классы: 8,9,10,11

Обсуждая в классе зимние каникулы, Саша сказал: "Теперь, после того как я слетал в Аддис-Абебу, я встречал Новый год во всех возможных полусферах Земли, кроме одной!"
В каком минимальном количестве мест встречал Новый год Саша?
Места, где Саша встречал Новый год, считайте точками на сфере. Точки на границе полусферы не считаются принадлежащими этой полусфере.

Прислать комментарий     Решение

Задача 65801

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Угол между касательной и хордой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 9,10,11

Дан треугольник ABC и прямая l, пересекающая прямые BC, AC, AB в точках La, Lb, Lc. Перпендикуляр, восставленный из точки La к BC, пересекает AB и AC в точках Ab и Ac соответственно. Точка Oa – центр описанной окружности треугольника AAbAc. Аналогично определим Ob и Oc. Докажите, что Oa, Ob и Oc лежат на одной прямой.

Прислать комментарий     Решение

Задача 65371

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Общая касательная к двум окружностям ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
[ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
Сложность: 4+
Классы: 9,10,11

Дан фиксированный треугольник ABC. По его описанной окружности движется точка P так, что хорды BC и AP пересекаются. Прямая AP разрезает треугольник BPC на два меньших, центры вписанных окружностей которых обозначим через I1 и I2 соответственно. Прямая I1I2 пересекает прямую BC в точке Z. Докажите, что все прямые ZP проходят через фиксированную точку.

Прислать комментарий     Решение

Задача 65645

Темы:   [ Вневписанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4+
Классы: 8,9,10

Точки IA, IB, IC – центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Перпендикуляр, опущенный из IA на AC, пересекает перпендикуляр, опущенный из IB на BC, в точке XC. Аналогично определяются точки XA и XB. Докажите, что прямые IAXA, IBXB и ICXC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65375

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC серединный перпендикуляр к BC пересекает прямые AB и AC в точках AB и AC соответственно. Обозначим через Oa центр описанной окружности треугольника AABAC. Аналогично определим Ob и Oc. Докажите, что описанная окружность треугольника OaObOc касается описанной окружности исходного треугольника.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .