ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 32889
УсловиеБудем называть точку плоскости узлом, если обе её координаты – целые числа. Внутри некоторого треугольника с вершинами в узлах лежит ровно два узла (возможно, какие-то еще узлы лежат на его сторонах). Докажите, что прямая, проходящая через эти два узла, либо проходит через одну из вершин треугольника, либо параллельна одной из его сторон. Решение 1 Лемма. Пусть точки X, Y принадлежат треугольнику ABC, но не совпадают с его вершинами, и отрезок XY не параллелен ни одной из сторон треугольника. Тогда от одной из вершин треугольника ABC можно отложить отрезок, равный и параллельный XY, так, что второй его конец окажется внутри треугольника. Вернёмся к задаче. Пусть X и Y – два узла внутри треугольника ABC. Если прямая XY параллельна одной из сторон треугольника, все в порядке. В противном случае, точка Z, построенная согласно лемме, также является узлом. По условию она совпадает с одной из точек Решение 2Если прямая XY не проходит через вершины треугольника ABC, то она не пересекает одну из его сторон, например, AB. Тогда внутри треугольников AXB и AYB нет узлов, и по формуле Пика (см. задачу 58208) площади треугольников AXB и AYB равны. Значит, точки X и Y находятся на равных расстояниях от прямой AB, то есть прямая XY параллельна прямой AB (см. рис.).Замечания1. См. также задачу 32895. 2. 6 баллов. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|