ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 34887
Темы:    [ Доказательство от противного ]
[ Парадоксы ]
Сложность: 3+
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Каждый из голосующих на выборах вносит в избирательный бюллетень фамилии 10 кандидатов. На избирательном участке находится 11 урн. После выборов выяснилось, что в каждой урне лежит хотя бы один бюллетень и при всяком выборе 11 бюллетеней по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.

Подсказка

Возьмите произвольный бюллетень из 11-й урны и рассуждайте от противного.

Решение

Возьмем произвольный бюллетень из 11-й урны. Пронумеруем кандидатов, фамилии которых встречаются в этом бюллетене. Предположим, что требуемое в задаче не выполнено. Тогда в k-й урне (k=1,2,...10) найдется бюллетень, не содержащий фамилии k-го кандидата. Набор этих бюллетеней вместе со взятым вначале бюллетенем из 11-й урны противоречит условию задачи.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .