ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В магазин завезли 20 кг сыра, за ним выстроилась очередь. Отпустив сыр очередному покупателю, продавщица безошибочно подсчитывает средний вес покупки по всему проданному сыру и сообщает, на сколько человек хватит оставшегося сыра, если все будут покупать именно по этому среднему весу. Могла ли продавщица после каждого из первых 10 покупателей сообщать, что сыра хватит ещё ровно на 10 человек? Если да, то сколько сыра осталось в магазине после первых 10 покупателей? Расшифруйте ребус: КИС+КСИ=ИСК. Одинаковым буквам соответствуют одинаковые цифры, разным — разные. На шкуре у Носорога складки – вертикальные и горизонтальные.
Если у Носорога на левом боку a вертикальных, b горизонтальных складок, а на правом – c вертикальных и d горизонтальных, будем говорить, что это Носорог в состоянии (abcd)
или просто Носорог (abcd). а) Докажите, что среди всех выпуклых четырёхугольников с данными углами и
данным периметром наибольшую площадь имеет описанный четырёхугольник.
В равнобедренной трапеции ABCD большее основание AD = 12, AB = 6. Найдите расстояние от точки O пересечения диагоналей до точки K пересечения продолжений боковых сторон, если продолжения боковых сторон пересекаются под прямым углом. Докажите, что пересечение трёх прямых круговых цилиндров с радиусами 1, оси которых попарно взаимно перпендикулярны (но не обязательно пересекаются), содержится в некотором шаре радиуса |
Задача 34893
УсловиеДокажите, что пересечение трёх прямых круговых цилиндров с радиусами 1, оси которых попарно взаимно перпендикулярны (но не обязательно пересекаются), содержится в некотором шаре радиуса РешениеПусть цилиндры задаются неравенствами (x – a)² + (y – b)² < 1, (y – c)² + (z – d)² < 1, (z – e)² + (x – f)² < 1. Заметим, что Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке