Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сфере отмечено пять точек, никакие три из которых не лежат на большой окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
  а) Сколько можно нарисовать окружностей, не проходящих через отмеченные точки и не эквивалентных друг другу?
  б) Та же задача для n отмеченных точек.

   Решение

Задача 35042
Тема:    [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Можно ли разбить какой-нибудь треугольник на 5 одинаковых треугольников?

Подсказка

В качестве примера можно взять прямоугольный треугольник, в котором катеты относятся как 1:2.

Решение

Примером является прямоугольный треугольник ABC с катетами AC=1 и BC=2. Укажем нужное разбиение этого треугольника. Проведем высоту CH из вершины C прямого угла. Треугольник ABC при этом разбивается на 2 подобных треугольника ACH и BCH. Коэффициент подобия этих треугольников равен AC/BC=1/2. Далее, треугольник BCH можно разбить средними линиями на 4 равных треугольника, каждый из которых подобен треугольнику BCH с коэффициентом подобия 1/2. В итоге треугольник ABC оказался разбитым на 5 треугольников, равных треугольнику ACH.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .