Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Пахарев А.

Дано несколько белых и несколько чёрных точек. Из каждой белой точки идет стрелка в каждую чёрную, на каждой стрелке написано натуральное число. Известно, что если пройти по любому замкнутому маршруту, то произведение чисел на стрелках, идущих по направлению движения, равно произведению чисел на стрелках, идущих против направления движения. Обязательно ли можно поставить в каждой точке натуральное число так, чтобы число на каждой стрелке равнялось произведению чисел на её концах?

Вниз   Решение


Докажите, что связный граф, у которого число рёбер на единицу меньше числа вершин, является деревом.

ВверхВниз   Решение


Пусть p – простое число и  p > 3.
  а) Докажите, что если разрешимо сравнение  x² + x + 1 ≡ 0 (mod p),  то  p ≡ 1 (mod 6).
  б) Выведите отсюда бесконечность множества простых чисел вида  6k + 1.

ВверхВниз   Решение


Пусть p – простое число и  p > 5.  Докажите, что если разрешимо сравнение  x4 + x3 + x2 + x + 1 ≡ 0 (mod p),  то   p ≡ 1 (mod 5).
Выведите отсюда бесконечность множества простых чисел вида  5n + 1.

ВверхВниз   Решение


Имеется 20 человек – 10 юношей и 10 девушек. Сколько существует способов составить компанию, в которой было бы одинаковое число юношей и девушек?

ВверхВниз   Решение


Во время шахматного турнира, несколько игроков сыграли нечётное количество партий. Докажите, что число таких игроков чётно.

ВверхВниз   Решение


Пусть a и k > 0 произвольные числа. Определим последовательность {an} равенствами

a0 = a,        an + 1 = $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \left(\vphantom{a_n+\frac{k}{a_n}}\right.$an + $\displaystyle {\frac{k}{a_n}}$$\displaystyle \left.\vphantom{a_n+\frac{k}{a_n}}\right)$    (n $\displaystyle \geqslant$ 0).

Докажите, что при любом неотрицательном n выполняется равенство

$\displaystyle {\frac{a_n-\sqrt k}{a_n+\sqrt k}}$ = $\displaystyle \left(\vphantom{\frac{a-\sqrt k}{a+\sqrt
k}}\right.$$\displaystyle {\frac{a-\sqrt k}{a+\sqrt
k}}$$\displaystyle \left.\vphantom{\frac{a-\sqrt k}{a+\sqrt
k}}\right)^{2^n}_{}$.


ВверхВниз   Решение


В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Можно ли за несколько ходов поставить коней так, чтобы во всех соседних углах стояли кони различного цвета?

ВверхВниз   Решение


На плоскости нарисовано несколько точек, некоторые пары точек соединены отрезками. Известно, что из каждой точки выходит не более k отрезков. Докажите, что точки можно покрасить в  k + 1  цвет таким образом, чтобы каждые две точки, соединенные отрезком, были покрашены в разные цвета.

ВверхВниз   Решение


n точек соединены отрезками так, что каждая точка с чем-нибудь соединена и нет таких двух точек, которые соединялись бы двумя разными путями.
Доказать, что общее число отрезков равно  n – 1.

ВверхВниз   Решение


Дано простое p и целое a, не делящееся на p. Пусть k – наименьшее натуральное число, при котором  ak ≡ 1 (mod p).  Докажите, что  p – 1  делится на k.

ВверхВниз   Решение


В парламенте 200 депутатов. В процессе заседания произошло 200 потасовок, в каждой из которой участвовали некоторые два депутата.
Докажите, что можно объединить в комиссию 67 депутатов, из которых никакие два не выясняли между собой отношения в потасовке.

Вверх   Решение

Задача 35163
Темы:    [ Теория графов (прочее) ]
[ Процессы и операции ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

В парламенте 200 депутатов. В процессе заседания произошло 200 потасовок, в каждой из которой участвовали некоторые два депутата.
Докажите, что можно объединить в комиссию 67 депутатов, из которых никакие два не выясняли между собой отношения в потасовке.


Подсказка

Вначале включим в комиссию всех депутатов, а затем исключаем из комиссии тех депутатов, которые участвовали по крайней мере в двух потасовках с членами комиссии.


Решение

Сначала включим в комиссию всех депутатов. Назовём депутата вредным для комиссии, если он участвовал по крайней мере в двух потасовках с членами этой комиссии. Если в комиссии нашелся вредный депутат, удалим его из комиссии (при этом некоторые депутаты могут перестать быть вредными). Будем удалять из комиссии вредных депутатов, пока это возможно. Пусть после завершения этого процесса депутатов в комиссии осталось k депутатов, между которыми произошли m потасовок. С одной стороны,  k ≥ 2m  (иначе есть вредный депутат); с другой стороны  200 – m ≥ 2(200 – k)  (так как каждый раз при удалении из комиссии вредного депутата количество потасовок между членами комиссии уменьшалось по крайней мере на 2). Отсюда
k + (200 – m)  ≥ 2m + 2(200 – k),  следовательно,  k – m ≥ 67.  Наконец, удалим из комиссии по одному участнику каждой из m потасовок, после чего получим комиссию, между членами которой уже не было потасовок, состоящую из  k – m  членов.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .