Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Пахарев А.

Дано несколько белых и несколько чёрных точек. Из каждой белой точки идет стрелка в каждую чёрную, на каждой стрелке написано натуральное число. Известно, что если пройти по любому замкнутому маршруту, то произведение чисел на стрелках, идущих по направлению движения, равно произведению чисел на стрелках, идущих против направления движения. Обязательно ли можно поставить в каждой точке натуральное число так, чтобы число на каждой стрелке равнялось произведению чисел на её концах?

Вниз   Решение


Докажите, что связный граф, у которого число рёбер на единицу меньше числа вершин, является деревом.

ВверхВниз   Решение


Пусть p – простое число и  p > 3.
  а) Докажите, что если разрешимо сравнение  x² + x + 1 ≡ 0 (mod p),  то  p ≡ 1 (mod 6).
  б) Выведите отсюда бесконечность множества простых чисел вида  6k + 1.

ВверхВниз   Решение


Пусть p – простое число и  p > 5.  Докажите, что если разрешимо сравнение  x4 + x3 + x2 + x + 1 ≡ 0 (mod p),  то   p ≡ 1 (mod 5).
Выведите отсюда бесконечность множества простых чисел вида  5n + 1.

ВверхВниз   Решение


Имеется 20 человек – 10 юношей и 10 девушек. Сколько существует способов составить компанию, в которой было бы одинаковое число юношей и девушек?

ВверхВниз   Решение


Во время шахматного турнира, несколько игроков сыграли нечётное количество партий. Докажите, что число таких игроков чётно.

ВверхВниз   Решение


Пусть a и k > 0 произвольные числа. Определим последовательность {an} равенствами

a0 = a,        an + 1 = $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \left(\vphantom{a_n+\frac{k}{a_n}}\right.$an + $\displaystyle {\frac{k}{a_n}}$$\displaystyle \left.\vphantom{a_n+\frac{k}{a_n}}\right)$    (n $\displaystyle \geqslant$ 0).

Докажите, что при любом неотрицательном n выполняется равенство

$\displaystyle {\frac{a_n-\sqrt k}{a_n+\sqrt k}}$ = $\displaystyle \left(\vphantom{\frac{a-\sqrt k}{a+\sqrt
k}}\right.$$\displaystyle {\frac{a-\sqrt k}{a+\sqrt
k}}$$\displaystyle \left.\vphantom{\frac{a-\sqrt k}{a+\sqrt
k}}\right)^{2^n}_{}$.


ВверхВниз   Решение


В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Можно ли за несколько ходов поставить коней так, чтобы во всех соседних углах стояли кони различного цвета?

Вверх   Решение

Задача 35514
Темы:    [ Обход графов ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Можно ли за несколько ходов поставить коней так, чтобы во всех соседних углах стояли кони различного цвета?


Подсказка

Кони ходят только циклу из восьми полей.


Решение

Отметим центры клеток доски и соединим отрезками пары отмеченных точек, если из одной в другую можно пройти ходом коня. Получится "цикл" из восьми точек. Перемещение коней по доске соответствует движению по рёбрам этого цикла. Но при движении по циклу нельзя изменить порядок следования коней.


Ответ

Нельзя.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .