ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52439
Темы:    [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Гипотенуза AB прямоугольного треугольника ABC равна 2 и является хордой некоторой окружности. Катет AC равен 1 и лежит внутри окружности, а его продолжение пересекает окружность в точке D, причём  CD = 3.  Найдите радиус окружности.


Решение

Катет AC равен половине гипотенузы AB, поэтому  ∠A = 60°.  Кроме того,  AD = 2AB,  поэтому угол ABD – прямой. Следовательно, AD – диаметр окружности.


Ответ

2.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 101

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .