ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 52475
Условие
В круге проведены два перпендикулярных диаметра AE и BF. На дуге EF взята точка C. Хорды CA и CB пересекают диаметры BF и AE в точках P и Q соответственно. Докажите, что площадь четырёхугольника APQB равна квадрату радиуса круга.
Подсказка
tg(
Решение
Пусть O — центр круга, R — радиус. Обозначим
SAPQB =
=
=
=
т.к.
tg(
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке