ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52479
Темы:    [ Диаметр, основные свойства ]
[ Наименьший или наибольший угол ]
[ Неравенства с углами ]
[ Принцип Дирихле (углы и длины) ]
[ Общие четырехугольники ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

На сторонах выпуклого четырёхугольника как на диаметрах построены четыре круга. Докажите, что они покрывают весь четырёхугольник.


Подсказка

Из непокрытой точки каждая сторона была бы видна под острым углом, что невозможно.

Решение

Предположим, что некоторая точка, расположенная внутри данного четырёхугольника, не принадлежит ни одному из указанных кругов. Тогда из этой точки диаметр каждого круга виден под острым углом. Поскольку четырёхугольник выпуклый, то сумма этих четырёх углов должна быть равна 360o, что невозможно, т.к. по предположению каждый из углов меньше 90o.

Источники и прецеденты использования

олимпиада
Название Белорусские республиканские математические олимпиады
олимпиада
Год 1966
Название 16-я Белорусская республиканская математическая олимпиада
Номер 16
Задача
Название Задача 8.4
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 20
Название Принцип крайнего
Тема Принцип крайнего
параграф
Номер 1
Название Наименьший или наибольший угол
Тема Наименьший или наибольший угол
задача
Номер 20.002
web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 142

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .