ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52488
Темы:    [ Угол между касательной и хордой ]
[ Взаимное расположение двух окружностей ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что  AD = AB.


Подсказка

Докажите равенство треугольников AOB и AOD.


Решение

Отрезки OA, OB и OD равны как радиусы одной окружности.  ∠ABO = ∠DAO  по теореме об угле между касательной и хордой. Поэтому равнобедренные треугольники AOB и AOD равны Следовательно,  AD = AB.

Замечания

3 балла

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 151
олимпиада
Название Турнир городов
Турнир
Дата 1991/1992
Номер 13
вариант
Вариант осенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .