ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52770
Темы:    [ Вписанный угол, опирающийся на диаметр ]
[ Средняя линия треугольника ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В четырёхугольнике ABCD  ∠DAB = ∠DBC = 90°. Кроме того,  DB = a,  DC = b.
Найдите расстояние между центрами двух окружностей, одна из которых проходит через точки D, A, B, а другая – через точки B, C, D.


Подсказка

Центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы.


Решение

Центры описанных окружностей треугольников DAB и BCD – это середины M и N отрезков DB и DC. MN – средняя линия треугольника DBC. Следовательно,  MN² = ½ BC² = ¼ (b² – a²).


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 435

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .