ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52877
Темы:    [ Теорема Пифагора (прямая и обратная) ]
[ Диаметр, хорды и секущие ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней,  OC = 9,  CD = 32.  Найдите длину хорды.


Решение

  Радиус окружности равен  OC + CD = 41.  Найдём BC².

  Первый способ.  BC² = OB² – OC² = 41² – 9² = 40².

  Второй способ. Пусть DM – диаметр. Тогда ∠DBM = 90°,  BC² = DM·CM = 32·50 = 40².

  Следовательно,  AB = 2BC = 80.


Ответ

80.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 544

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .