ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52887
Темы:    [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Две окружности радиусов r и R касаются внешним образом. Из центра одной окружности проведена касательная к другой, а из полученной точки касания проведена касательная к первой окружности. Найдите длину последней касательной.


Подсказка

Линия центров двух касающихся окружностей проходит через их точку касания.


Решение

  Пусть O и O2 – центры окружностей, M и K – первая и вторая точки касания (см. рис.).
  По теореме Пифагора  OM² = O2O² – O2M² = (R + r)² – R² = r² + 2rRMK² = OM² – OK² = 2rR.


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 554

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .