ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52944
Темы:    [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На катете BC прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке K . Найдите площадь треугольника CKB , если катет BC равен a и катета AC равен b .

Решение

По теореме Пифагора

AB==.

Точка K лежит на окружности с диаметром BC , поэтому BKC = 90o . Треугольник CBK подобен треугольнику ABC по двум углам, причём коэффициент подобия равен = , значит, площадь треугольника CBK равна площади треугольника ABC , умноженной на квадрат коэффициента подобия, т.е.
SΔ CBK= ()2· ab= .


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 611

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .