ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52971
Темы:    [ Вписанный угол, опирающийся на диаметр ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Сторона AD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите сторону BC, если AD = 6, BD = 3$ \sqrt{3}$, $ \angle$BAC : $ \angle$CAD = 1 : 3.


Ответ

$ {\frac{3(\sqrt{6} - \sqrt{2})}{2}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 638

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .