ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52994
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружность касается стороны BC треугольника ABC в её середине M, проходит через точку A, а отрезки AB и AC пересекает в точках D и E соответственно. Найдите угол A, если известно, что  BC = 12,  AD = 3,5  и  EC = .


Подсказка

Примените теорему о касательной и секущей.


Решение

  По теореме о касательной и секущей  BM² = AB·BDCM² = AC·CE,  или  36 = AB(AB7/2),  36 = ,  откуда  AB = 8,  AC = 4.
  Поскольку  AB² + AC² = 64 + 80 = 144 = BC²,  то треугольник ABC – прямоугольный.


Ответ

90°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 661

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .