ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На доске написали 100 попарно различных натуральных чисел a1, a2, ..., a100. Затем под каждым числом ai написали число bi, полученное прибавлением к ai наибольшего общего делителя остальных 99 исходных чисел. Какое наименьшее количество попарно различных чисел может быть среди b1, b2, ..., b100? |
Задача 53002
УсловиеВ прямоугольном секторе AOB из точки B как из центра проведена дуга OC (C – точка пересечения этой дуги с дугой AB) радиуса BO. Окружность ω касается дуги AB, дуги OC и прямой OA, а окружность ω' касается дуги OC, прямой OA и окружности ω. Найдите отношение радиуса окружности ω к радиусу окружности ω'. Решение Можно считать, что радиус ω равен 1. Пусть R – радиус сектора, O1 – центр ω, D – проекция O1 на OB. Тогда O1B² – BD² = O1D² = O1O² – OD², то есть Ответ
ЗамечанияВо втором случае ω' касается не дуги OC, а её продолжения. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке