Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

От квадрата отрезан прямоугольный треугольник, сумма катетов которого равна стороне квадрата.
Докажите, что сумма трёх углов, под которыми видна из трёх оставшихся вершин его гипотенуза, равна 90°.

Вниз   Решение


Докажите, что треугольник ABC равнобедренный, если у него:
  а) медиана BD является высотой;
  б) высота BD является биссектрисой.

Вверх   Решение

Задача 53320
Темы:    [ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Докажите, что треугольник ABC равнобедренный, если у него:
  а) медиана BD является высотой;
  б) высота BD является биссектрисой.


Решение

  а) Треугольники ABD и CBD равны по двум сторонам и углу между ними. Поэтому  AB = BC.

  б) Треугольники ABD и CBD равны по стороне и двум прилежащим к ней углам. Поэтому  AB = BC.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1016
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 0
Название Вводные задачи
задача
Номер 05.000.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .