Страница: 1 [Всего задач: 4]
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC².
Докажите, что треугольник ABC равнобедренный, если у него:
а) медиана BD является высотой;
б) высота BD является биссектрисой.
На сторонах AB, BC, CA правильного треугольника ABC
взяты точки P, Q, R так, что AP : PB = BQ : QC = CR : RA = 2 : 1.
Докажите, что стороны треугольника PQR перпендикулярны сторонам треугольника ABC.
Докажите, что биссектрисы треугольника пересекаются в одной точке.
Страница: 1 [Всего задач: 4]