ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53649
Темы:    [ Признаки и свойства параллелограмма ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Диагонали параллелограмма ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами ромба.


Подсказка

Докажите, что диагонали указанного четырёхугольника взаимно перпендикулярны и делятся точкой их пересечения пополам.


Ответ

Пусть M, N, K и L — точки пересечения биссектрис треугольников ABO, BCO, CDO и DAO соответственно. Тогда прямые MK и NL проходят через точку O и MK $ \perp$ NL.

Треугольники BOM и DOK равны по стороне (OB = OD) и двум прилежащим к ней углам, поэтому MO = OK. Аналогично NO = OL. Значит, MNKL — параллелограмм, диагонали которого взаимно перпендикулярны, т.е. ромб.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1384

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .