ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 53657
Условие
Две окружности касаются внешним образом. К ним проведена общая внешняя касательная. На отрезке этой касательной, заключённом между точками касания, как на диаметре построена окружность. Докажите, что она касается линии центров первых двух окружностей.
Подсказка
Проведите общую внутреннюю касательную к данным окружностям.
Решение
Пусть O1 и O2 — центры окружностей, AB — указанная
касательная (A и B — точки касания). Проведём через точку K
касания окружностей общую внутреннюю касательную. Пусть M — её
точка пересечения с отрезком AB. Поскольку
MA = MK = MB, то
окружность, построенная на отрезке AB как на диаметре, имеет центр
в точке M и проходит через точку K, а т.к.
MK
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке