ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53770
Темы:    [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точки A1 и C1 расположены на сторонах BC и AB треугольника ABC. Отрезки AA1 и CC1 пересекаются в точке M.
В каком отношении прямая BM делит сторону AC, если  AC1 : C1B = 2 : 3  и  BA1 : A1C = 1 : 2?


Подсказка

Используйте теорему Чевы.


Ответ

1 : 3,  считая от точки A.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1534

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .