ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 54053
Темы:    [ Касающиеся окружности ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Две окружности с центрами O1 и O2 касаются внешним образом, а также касаются некоторой прямой соответственно в точках A и B. На продолжении за точку A радиуса O1A меньшей окружности отложен отрезок AK, равный O2B. Докажите, что O2K – биссектриса угла O1O2B.


Подсказка

Треугольник KO1O2 – равнобедренный.


Решение

Отрезки O1K и O1O2 равны, так как каждый из них равен сумме радиусов окружностей. Углы O1KO2 и KO2B равны, так как  O1K || O2B.  Поэтому
O1O2K = ∠O1KO2 = ∠KO2B.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1816

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .