Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения?

Вниз   Решение


Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
Докажите, что не менее, чем десять пар шпионов донесли друг на друга.

ВверхВниз   Решение


В прямоугольном треугольнике ABC  (∠B = 90°)  проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что  OB1 = OB2.

ВверхВниз   Решение


В ориентированном графе 101 вершина. У каждой вершины число входящих и число выходящих рёбер равно 40.

Доказать, что из каждой вершины можно попасть в любую другую, пройдя не более чем по трём ребрам.

ВверхВниз   Решение


Автор: Петров Ф.

В стране есть  n > 1  городов, некоторые пары городов соединены двусторонними беспосадочными авиарейсами. При этом между каждыми двумя городами существует единственный авиамаршрут (возможно, с пересадками). Мэр каждого города X подсчитал количество таких нумераций всех городов числами от 1 до n, что на любом авиамаршруте, начинающемся в X, номера городов идут в порядке возрастания. Все мэры, кроме одного, заметили, что их результаты подсчётов делятся на 2016. Докажите, что и у оставшегося мэра результат также делится на 2016.

ВверхВниз   Решение


В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?

ВверхВниз   Решение


Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите основания трапеции.

Вверх   Решение

Задача 54311
Темы:    [ Средняя линия трапеции ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите основания трапеции.


Подсказка

Обозначьте через x и y основания трапеции и составьте систему уравнений относительно x и y.


Решение

Обозначим через x и y основания трапеции (x < y). Тогда

x + y = 2 . 10 = 20.

Если h — высота трапеции, то высота каждой из двух трапеций, на которые средняя линия разбивает данную трапецию, равна $ {\frac{h}{2}}$. Поэтому

$\displaystyle {\frac{x + 10}{y + 10}}$ = $\displaystyle {\textstyle\frac{3}{5}}$.

Из системы

$\displaystyle \left\{\vphantom{ \begin{array}{lll}
x+y = 20\\
\frac{x + 10}{y + 10} = \frac{3}{5}\\
\end{array} }\right.$$\displaystyle \begin{array}{lll}
x+y = 20\\
\frac{x + 10}{y + 10} = \frac{3}{5}\\
\end{array}$

находим, что x = 5 и y = 15.


Ответ

15 и 5.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2074

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .