Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи


Основание пирамиды - ромб с острым углом в 30o. Боковые грани наклонены к плоскости основания под углом в 60o. Найдите объем пирамиды, если радиус вписанного в ромб круга равен r.

Вниз   Решение


Внутри выпуклого многоугольника расположено несколько попарно непересекающихся кругов различных радиусов. Докажите, что многоугольник можно разрезать на маленькие многоугольники так, чтобы все они были выпуклыми и в каждом из них содержался ровно один из данных кругов.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если заданы сторона, прилежащий к ней угол и разность двух других сторон.

Вверх   Решение

Задача 54598
Темы:    [ Построение треугольников по различным элементам ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

С помощью циркуля и линейки постройте треугольник, если заданы сторона, прилежащий к ней угол и разность двух других сторон.


Решение

  Предположим, что нужный треугольник ABC построен. Пусть B – данный угол,  AB > ACAB – AC = d – данная разность,  BC = a – данная сторона.
  На луче AB отложим отрезок AD, равный AC. Тогда  BD = AB – AD = AB – AC = d  и треугольник ADC равнобедренный. Следовательно, вершина A лежит на серединном перпендикуляре к DC.

  Если  AB < AC,  то  ∠CBD = 180° – ∠B.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2493

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .