ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите последние две цифры в десятичной записи числа 1! + 2! + ... + 2001! + 2002!. В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение SAFD : SABC, если AB : AC : BC = 21 : 28 : 20. |
Задача 54979
УсловиеВ треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение SAFD : SABC, если AB : AC : BC = 21 : 28 : 20. РешениеПо свойству биссектрисы треугольника BD : DC = AB : AC = 3 : 4, AF : FB = AC : CB = 7 : 5. Поэтому SAFD = 7/12 SABD = 7/12·3/7·SABC = 1/4 SABC. Ответ1 : 4. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке