ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55015
Темы:    [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Трапеции (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площади треугольников ABE и CDE равны между собой, диагональ AC является биссектрисой угла A,  AB = 4.  Найдите BC.


Подсказка

Докажите, что  BC || AD.


Решение

Согласно задаче 35162  CB || AD.  Значит,  ∠BCA = ∠DAC = ∠BAC,  то есть треугольник ABC – равнобедренный и  BC = AB = 4.


Ответ

4.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3071

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .