ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Построить треугольник по высоте и медиане, выходящим из одной вершины, и радиусу описанного круга. В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа. Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых многоугольников; пять кусков затерялись, остался один кусок в форме правильного восьмиугольника (см. рисунок). Можно ли по одному этому восьмиугольнику восстановить исходный квадрат? Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?
Две высоты треугольника равны 12 и 20. Докажите, что третья высота меньше 30.
|
Задача 55177
Условие
Две высоты треугольника равны 12 и 20. Докажите, что третья высота меньше 30.
Подсказка
Произведение основания на высоту для данного треугольника постоянно.
Решение
Пусть a, b, c — стороны треугольника; к стороне a проведена высота, равная 12, к стороне b — высота, равная 20, к стороне c -- высота h. Тогда
c > a - b = 2x.
Следовательно
h =
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке