|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Задача 55392
Условие
Продолжения сторон AB и CD вписанного четырёхугольника ABCD пересекаются в точке P, а продолжения BC и AD — в точке Q. Докажите, что точки пересечения биссектрис углов AQB и BPC со сторонами четырёхугольника являются вершинами ромба.
Подсказка
Если
Решение
Пусть P1 и P2 — точки пересечения биссектрисы угла BPC с окружностью, описанной около четырёхугольника ABCD, а Q1 и Q2 — биссектрисы угла AQB, причём точка P1 лежит между P и P2, Q1 — между Q и Q2. Тогда
Источники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|
Проект осуществляется при поддержке