ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55436
Темы:    [ Теорема синусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В окружность с центром O вписана трапеция ABCD, в которой AB || DC, AB = 5, DC = 1, угол ABC равен 60o. Точка K лежит на отрезке AB, причём AK = 2. Прямая CK пересекает окружность в точке F, отличной от C. Найдите площадь треугольника OFC.


Ответ

$ {\frac{19\sqrt{3}}{52}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4758

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .