Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида  a + d,  где d взаимно просто с а и  10 ≤ d ≤ 20.
Можно ли через несколько таких операций получить на доске число 18! ?

Вниз   Решение


У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).

ВверхВниз   Решение


Автор: Шноль Д.Э.

Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа?

ВверхВниз   Решение


Автор: Фольклор

Замените буквы цифрами в ребусе  Г + О = Л – О = В × О = Л – О = М – К = А  так, чтобы все равенства стали верными; при этом одинаковым буквам должны соответствовать одинаковые цифры, а различным – различные. Найдите все решения ребуса.

ВверхВниз   Решение


а) На две клетки шахматной доски выставляются чёрная и белая фишки. Разрешается по очереди передвигать их, каждым ходом сдвигая очередную фишку на любое свободное соседнее поле по вертикали или горизонтали. Могут ли на доске в результате таких ходов встретиться все возможные позиции расположения этих двух фишек, причём ровно по одному разу?
б) А если разрешается сдвигать фишки в любом порядке (не обязательно по очереди)?

ВверхВниз   Решение


Квадрат 8×8 клеток выкрашен в белый цвет. Разрешается выбрать в нём любой прямоугольник из трёх клеток и перекрасить все их в противоположный цвет (белые в чёрный, чёрные – в белый). Удастся ли несколькими такими операциями перекрасить весь квадрат в чёрный цвет?

ВверхВниз   Решение


На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
Сколько прямоугольников из этих девяти могут иметь нечётную площадь?

ВверхВниз   Решение


Автор: Столов Е.

Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше  – 1/n.

Вверх   Решение

Задача 55590
Темы:    [ Симметрия помогает решить задачу ]
[ Построение треугольников по различным точкам ]
[ Углы между биссектрисами ]
[ Построение треугольников по различным элементам ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

Подсказка

Если A — данная вершина искомого треугольника, принадлежащая одной из трёх данных прямых, то точки, симметричные точке A относительно двух других данных прямых, лежат на прямой, содержащей сторону искомого треугольника.


Решение

Предположим, что нужный треугольник ABC построен. Пусть A — его вершина, лежащая на данной прямой l1, а вершины B и C лежат на данных прямых l2 и l3. Тогда точка M, симметричная точке A относительно прямой l2, и точка N, симметричная точке A относительно прямой l3, лежат на прямой BC.

Отсюда вытекает следующий способ построения. Строим точки M и N, симметричные данной точке A (лежащей на данной прямой l1) относительно данных прямых l2 и l3. Прямая MN пересекает прямые l2 и l3 в вершинах B и C искомого треугольника ABC.

Замечания

В "Задачнике Кванта" данная задача формулировалась так:
На плоскости даны три прямые, пересекающиеся в одной точке. На одной из них отмечена точка. Известно, что прямые являются биссектрисами некоторого треугольника, а отмеченная точка - одна из его вершин. Постройте этот треугольник.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5038
web-сайт
задача
журнал
Название "Квант"
год
Год 1970
выпуск
Номер 12
Задача
Номер М58

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .