ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20. У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать). Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа? Замените буквы цифрами в ребусе Г + О = Л – О = В × О = Л – О = М – К = А так, чтобы все равенства стали верными; при этом одинаковым буквам должны соответствовать одинаковые цифры, а различным – различные. Найдите все решения ребуса. а) На две клетки шахматной доски выставляются чёрная и белая фишки. Разрешается по очереди передвигать их, каждым ходом сдвигая очередную фишку на любое свободное соседнее поле по вертикали или горизонтали. Могут ли на доске в результате таких ходов встретиться все возможные позиции расположения этих двух фишек, причём ровно по одному разу? Квадрат 8×8 клеток выкрашен в белый цвет. Разрешается выбрать в нём любой прямоугольник из трёх клеток и перекрасить все их в противоположный цвет (белые в чёрный, чёрные – в белый). Удастся ли несколькими такими операциями перекрасить весь квадрат в чёрный цвет? На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые. Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше – 1/n. |
Задача 55590
УсловиеС помощью циркуля и линейки постройте треугольник, если дана
одна его вершина и три прямых, на которых лежат его биссектрисы.
Подсказка
Если A — данная вершина искомого треугольника, принадлежащая одной из трёх данных прямых, то точки, симметричные точке A относительно двух других данных прямых, лежат на прямой, содержащей сторону искомого треугольника.
Решение
Предположим, что нужный треугольник ABC построен. Пусть A — его вершина, лежащая на данной прямой l1, а вершины B и C лежат на данных прямых l2 и l3. Тогда точка M, симметричная точке A относительно прямой l2, и точка N, симметричная точке A относительно прямой l3, лежат на прямой BC. Отсюда вытекает следующий способ построения. Строим точки M и N, симметричные данной точке A (лежащей на данной прямой l1) относительно данных прямых l2 и l3. Прямая MN пересекает прямые l2 и l3 в вершинах B и C искомого треугольника ABC.
ЗамечанияВ "Задачнике Кванта" данная задача формулировалась так:На плоскости даны три прямые, пересекающиеся в одной точке. На одной из них отмечена точка. Известно, что прямые являются биссектрисами некоторого треугольника, а отмеченная Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке