ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55632
Темы:    [ Симметрия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.


Подсказка

Рассмотрите симметрию относительно прямой AB.


Решение

Пусть C1 – точка, симметричная точке C относительно прямой AB. Точка C1 лежит на данной окружности, так как сама окружность симметрична относительно диаметра AB. Поскольку  ∠C1MD = 90°,  то   CM² + DM² = C1M² + DM² = C1D²,  а ∠C1CD = ∠AMD = 45°.  Поэтому длина C1D, а значит, и сумма  CM² + DM²  не зависит от выбора точки M.

Замечания

7 баллов

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5084
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 17
Название Осевая симметрия
Тема Осевая и скользящая симметрии
параграф
Номер 1
Название Симметрия помогает решить задачу
Тема Симметрия помогает решить задачу
задача
Номер 17.001
олимпиада
Название Московская математическая регата
год
Год 2017/18
класс
Класс 11
задача
Номер 11.5.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .