ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи У мамы два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд она дает сыну один из оставшихся фруктов. Астрономический прожектор освещает октант (трёхгранный угол, у которого все плоские углы прямые). Прожектор помещён в центр куба. Можно ли его повернуть таким образом, чтобы он не освещал ни одной вершины куба? Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом. Постройте окружность с данным центром, касающуюся
данной окружности.
Даны отрезки, длины которых равны a, b и c. Постройте
отрезок длиной: a) ab/c; б) Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма? Докажите, что выпуклый четырехугольник ABCD можно
вписать в окружность тогда и только тогда, когда
Постройте треугольник ABC по стороне a, высоте ha и
углу A.
В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN.
В каком месте следует построить мост MN через реку, разделяющую две данные деревни A и B, чтобы путь AMNB из деревни A в деревню B был кратчайшим (берега реки считаются параллельными прямыми, мост предполагается перпендикулярным к реке).
|
Задача 55690
Условие
В каком месте следует построить мост MN через реку, разделяющую две данные деревни A и B, чтобы путь AMNB из деревни A в деревню B был кратчайшим (берега реки считаются параллельными прямыми, мост предполагается перпендикулярным к реке).
Подсказка
Рассмотрите образы точек A и M при параллельном переносе на
вектор
Решение
Предположим, что некоторое положение моста найдено. При
параллельном переносе на вектор
AM + MN + NB = AA1 + A1N + NB
(неравенство треугольника), причём равенство достигается,
если точки A1, N и B лежат на одной прямой, т.е.
BN || AM.
Отсюда вытекает следующий способ построения. Отложим от точки A отрезок AA1, по величине равный ширине реки и перпендикулярный к её направлению, соединим точку A1 с точкой B. Точка N, полученная при пересечении A1B с более близким к B берегом реки, определит положение моста.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке