Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Решите в целых числах уравнение:  x³ + x² + x – 3 = 0.

Вниз   Решение


В окружности радиуса R проведена хорда, равная R/2. Через один конец хорды проведена касательная к окружности, а через другой – секущая, параллельная касательной. Найдите расстояние между касательной и секущей.

ВверхВниз   Решение


Про положительные числа a, b, c, d, e известно, что  a² + b² + c² + d² + e² = ab + ac + ad + ae + bc + bd + be + cd + ce + de.
Докажите, что среди этих чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

Вверх   Решение

Задача 56454
Тема:    [ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На стороне BC треугольника ABC взята точка A1 так, что  BA1 : A1C = 2 : 1.  В каком отношении медиана CC1 делит отрезок AA1?


Подсказка

Проведите среднюю линию треугольника ABA1, параллельную AA1.


Ответ

3 : 1,  считая от вершины A.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 0
Название Вводные задачи
Тема Подобные треугольники (прочее)
задача
Номер 01.000.4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .