ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 56457
УсловиеДокажите, что середины сторон произвольного четырёхугольника – вершины параллелограмма. РешениеПусть K, L, M и N – середины сторон AB, BC, CD и DA соответственно четырёхугольника ABCD. Тогда KL = MN = AC/2 и отрезок KL параллелен MN, то есть KLMN – параллелограмм.Теперь ясно, что KLMN – прямоугольник, если диагонали AC и BD перпендикулярны; ромб, если AC = BD; квадрат, если диагонали AC и BD равны по длине и перпендикулярны. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|