Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

По окружности выписано 10 чисел, сумма которых равна 100. Известно, что сумма каждых трёх чисел, стоящих рядом, не меньше 29.
Укажите такое наименьшее число А, что в любом таком наборе чисел каждое из чисел не превосходит А.

Вниз   Решение


n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
  а) При каких n это возможно, если   m = 9?
  б) При каких n и m это возможно?

ВверхВниз   Решение


Для чисел а, b и с выполняется равенство  .  Следует ли из него, что  ?

ВверхВниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей. Известен радиус описанной окружности R.
а) Найдите  AP2 + BP2 + CP2 + DP2.
б) Найдите сумму квадратов сторон четырехугольника ABCD.

Вверх   Решение

Задача 56614
Тема:    [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. P - точка пересечения диагоналей. Известен радиус описанной окружности R.
а) Найдите  AP2 + BP2 + CP2 + DP2.
б) Найдите сумму квадратов сторон четырехугольника ABCD.

Решение

Пусть  $ \angle$AOB = 2$ \alpha$ и  $ \angle$COD = 2$ \beta$. Тогда  $ \alpha$ + $ \beta$ = $ \angle$ADP + $ \angle$PAD = 90o. Поэтому  (AP2 + BP2) + (CP2 + DP2) = AB2 + CD2 = 4R2(sin2$ \alpha$ + cos2$ \alpha$) = 4R2. Аналогично  BC2 + AD2 = 4R2.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 8
Название Вписанный четырехугольник с перпендикулярными диагоналями
Тема Вписанный четырехугольник с перпендикулярными диагоналями
задача
Номер 02.071

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .