ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 56653
УсловиеДокажите, что из точки A, лежащей вне окружности,
можно провести ровно две касательные к окружности, причем
длины этих касательных (т. е. расстояния от A до точек
касания) равны.
РешениеПусть $O$ – центр данной окружности. Касательная перпендикулярна радиусу, проведённому к точке касания, значит, точка касания лежит на окружности, построенной на $OA$ как на диаметре. Поскольку такая окружность проходит через $O$, она пересекает данную окружность в двух точках; совокупность двух окружностей симметрична относительно их линии центров, значит, при симметрии одна касательная перейдёт во вторую (и наоборот) следовательно, длины отрезков таких касательных равны. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке