ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56676
Тема:    [ Касающиеся окружности ]
Сложность: 3
Классы: 8
В корзину
Прислать комментарий

Условие

Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.

Решение

Пусть O, O1 и O2 — центры окружностей S, S1 и S2C — общая точка окружностей S1 и S2, лежащая на отрезке AB. Треугольники  AOB, AO1C и CO2B равнобедренные, поэтому OO1CO2 — параллелограмм и  OO1 = O2C = O2B, а значит,  AO = AO1 + O1O = AO1 + O2B.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 3
Название Окружности
Тема Окружности
параграф
Номер 3
Название Касающиеся окружности
Тема Касающиеся окружности
задача
Номер 03.019

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .