ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56719
Тема:    [ Радикальная ось ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

Даны две неконцентрические окружности S1 и S2. Докажите, что множеством центров окружностей, пересекающих обе эти окружности под прямым углом, является их радикальная ось, из которой (если данные окружности пересекаются) выброшена их общая хорда.

Решение

Пусть O1 и O2 — центры данных окружностей, r1 и r2 — их радиусы. Окружность S радиуса r с центром O ортогональна окружности Si тогда и только тогда, когда  r2 = OOi2 - ri2, т. е. квадрат радиуса окружности S равен степени точки O относительно окружности Si. Поэтому множеством центров искомых окружностей является множество тех точек радикальной оси, степени которых относительно данных окружностей положительны.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 3
Название Окружности
Тема Окружности
параграф
Номер 10
Название Радикальная ось
Тема Радикальная ось
задача
Номер 03.057

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .