ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а)
1 < cos Дан выпуклый четырехугольник ABCD. Пусть P, Q —
точки пересечения продолжений противоположных сторон
AB и CD, AD и BC соответственно, R — произвольная
точка внутри четырехугольника. Пусть K — точка пересечения
прямых BC и PR, L — точка пересечения прямых AB и QR,
M — точка пересечения прямых AK и DR. Докажите, что
точки L, M и C лежат на одной прямой.
а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх? |
Задача 56803
УсловиеРасстояния от точки X стороны BC треугольника ABC
до прямых AB и AC равны db и dc. Докажите,
что
db/dc = BX . AC/(CX . AB).
РешениеДостаточно заметить, что
db . AB = 2SAXB = BX . AX sin Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке