ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны На одной прямой взяты точки A1, B1 и C1, а на
другой — точки A2, B2 и C2. Прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в точках C, A
и B соответственно. Докажите, что точки A, B и C лежат на одной
прямой (Папп).
|
Задача 56908
УсловиеНа одной прямой взяты точки A1, B1 и C1, а на
другой — точки A2, B2 и C2. Прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в точках C, A
и B соответственно. Докажите, что точки A, B и C лежат на одной
прямой (Папп).
РешениеРассмотрим треугольник A0B0C0, образованный прямыми A1B2, B1C2 и C1A2 (A0 — точка пересечения прямых A1B2 и A2C1 и т. д.), и применим для него теорему Менелая к следующим пяти тройкам точек: (A, B2, C1), (B, C2, A1), (C, A2, B1), (A1, B1, C1) и (A2, B2, C2). В результате получим Перемножая эти равенства, получаем Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке