ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

 Основания равнобедренной трапеции равны 6 и 12. Боковые стороны равны 5. Найдите синус острого угла трапеции.


Вниз   Решение


Графики функций  у = х² + ах + b  и  у = х² + сх + d  пересекаются в точке с координатами  (1, 1).  Сравните  а5 + d6  и  c6b5.

Вверх   Решение

Задача 56911
Тема:    [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9
В корзину
Прислать комментарий

Условие

а) Через точки P и Q проведены тройки прямых. Обозначим их точки пересечения так, как показано на рис. Докажите, что прямые KL, AC и MN пересекаются в одной точке (или параллельны).
б) Докажите, далее, что если точка O лежит на прямой BD, то точка пересечения прямых KL, AC и MN лежит на прямой PQ.



Решение

а) Пусть R — точка пересечения прямых KL и MN. Применяя теорему Паппа к тройкам точек (P, L, N) и (Q, M, K), получаем, что точки A, C и R лежат на одной прямой.
б) Применяя теорему Дезарга к треугольникам NDM и LBK, получаем, что точки пересечения прямых ND и LBDM и BKNM и LK лежат на одной прямой.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 7
Название Теорема Менелая
Тема Теоремы Чевы и Менелая
задача
Номер 05.068

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .