ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56940
Тема:    [ Прямая Симсона ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

На окружности фиксированы точки P и C; точки A и B перемещаются по окружности так, что угол ACB остается постоянным. Докажите, что прямые Симсона точки P относительно треугольников ABC касаются фиксированной окружности.

Решение

. Пусть A1 и B1 — основания перпендикуляров, опущенных из точки P на прямые BC и AC. Точки A1 и B1 лежат на окружности с диаметром PC. Так как  sin A1CB1 = sin ACB, хорды A1B1 этой окружности имеют фиксированную длину. Следовательно, прямые A1B1 касаются фиксированной окружности.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 9
Название Прямая Симсона
Тема Прямая Симсона
задача
Номер 05.091

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .