ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57152
Тема:    [ ГМТ и вспомогательные равные треугольники ]
Сложность: 5
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дана полуокружность с центром O. Из каждой точки X, лежащей на продолжении диаметра полуокружности, проводится касающийся полуокружности луч и на нем откладывается отрезок XM, равный отрезку XO. Найдите ГМТ M, полученных таким образом.

Решение

Пусть K — точка касания прямой MX и данной полуокружности, а P — проекция точки M на диаметр. В прямоугольных треугольниках MPX и OKX равны гипотенузы и  $ \angle$PXM = $ \angle$OXK, а значит, эти треугольники равны и, в частности, MP = KO = R, где R — радиус данной полуокружности. Следовательно, точка M лежит на прямой l, параллельной диаметру полуокружности и касающейся полуокружности. Пусть AB — отрезок прямой l, проекцией которого является диаметр полуокружности. Из точки прямой l, лежащей вне отрезка AB, нельзя провести касательную к данной полуокружности, так как касательная, проведенная к окружности, будет касаться другой полуокружности. Искомым ГМТ является отрезок AB, из которого выброшены точки A и B и его середина.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 7
Название Геометрические места точек
Тема Геометрические Места Точек
параграф
Номер 4
Название Вспомогательные равные треугольники
Тема ГМТ и вспомогательные равные треугольники
задача
Номер 07.023

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .